Microsoft Typography	Quick Reference Guide v.1.0

SBIT32.EXE v.1.831 Bitmap Embedding Tool

Redistribution of this copyrighted tool is restricted. Microsoft does not provide technical support for this tool, although we are interested in your comments and suggestions.

SBIT32 is a 32-bit console tool that embeds bitmap data into existing TrueType font files. These embedded bitmaps are also called “sbits” (for “scaler bitmaps”). To use SBIT32, you first need to create a file which contains the bitmap information (.BDF), and a file containing metrics and format information (.MET). SBIT32 reads these input files and inserts tables containing bitmap information into the TrueType file.

SBIT32 can also be used to delete all embedded bitmaps of a specified ppem size, generate .BDF files from fonts with sbit data, or add information enabling bitmaps to be shared between sizes.

Running SBIT32.EXE

SBIT32.EXE can be used to add bitmaps to a font or delete bitmaps from a font. You can also generate .BDF files from a font and have bitmaps shared among more than one ppem size. Throughout this quick reference guide, files containing bitmap and metric data are referred to as .BDF and .MET files, respectively, although you can use any names or extensions you wish for your bitmap and metrics files.

(To add bitmap information to a font:

	SBIT32.EXE [-v] -a in.ttf in.bdf in.met out.ttf

	Try it with the sample files! SBIT32.EXE -a SAMPLE.TTF SAMPLE.BDF SAMPLE.MET NEWSAMP.TTF

(To delete information from a font:

	SBIT32.EXE [-v] -d in.ttf in.met out.ttf

(To extract bitmaps of a specific ppem size from a font (creating a new .BDF file)

	SBIT32.EXE [-v] -x in.ttf in.met out.bdf

(To specify that bitmaps be shared among additional ppem sizes:

	SBIT32.EXE [-v] -l in.ttf in.met out.ttf

TrueType Embedded Bitmaps

Embedded bitmaps and the bitmap table formats are documented in the chapter “The TrueType Font File” in the TrueType 1.0 Font File Specification, v.1.66. The spec is available on www.microsoft.com/truetype/.

Embedded bitmaps provide an efficent means of storing and displaying glyphs at small sizes, where hinting is difficult. For example, Windows 95 uses embedded bitmaps for Kanji ideographs at small sizes to ensure legibility.

Embedded bitmaps can be inserted for any glyph at any specified ppem size. TrueType fonts containing only embedded bitmaps (with no outlines) are permitted.

The behavior of embedded bitmaps within a TrueType font is transparent to the text-processing client. If an embedded bitmap exists in a font for a requested glyph at a specified size, then the rasterizer returns the embedded bitmap. If an embedded bitmap does not exist in the font, then the rasterizer returns a bitmap generated from the outline data and hints in a font.

SBIT Tables

Two tables contain embedded bitmap information in TrueType fonts:

EBDT�
Embedded Bitmap Data: stores the glyph bitmap data in a number of different possible formats.�
�
EBLC�
Embedded Bitmap Locators: identifies the sizes and glyph ranges of the embedded bitmaps and keeps offsets to glyph bitmap data.�
�
�
The BDF File Format

SBIT32 inserts bitmap data taken from a .BDF text file, a bitmap format specified by Adobe. The specification is available at ftp.adobe.com/pub/adobe/DeveloperSupport/Technotes/PSfiles/5005.BDF.ps. Microsoft does not have a tool to generate BDF files, but tools are available (for example, Macromedia Fontographer). Some font developers have written simple applications to convert other bitmap formats to BDF files in order to use SBIT32.

SBIT32.EXE does not use all fields defined by the BDF Specification. And Microsoft has extended the way characters are identified in a BDF to allow postscript names, unicode values, or glyph id’s.

Bitmaps defined within a .BDF file are a series of binary fields represented as hexadecimal values.

A bitmap defined in SAMPLE.BDF File...�
�
�
...

STARTCHAR B

ENCODING 66

SWIDTH 654 0

DWIDTH 8 0

BBX 7 8 0 0

BITMAP

fc

66

66

7c

66

66

66

fc

ENDCHAR

...

�

...and the bitmap represented by these values

��
�

Character Identification

STARTCHAR psname.unicode.glyphid�
Microsoft has extended the BDF format so that SBIT32 may match bitmap data to a glyph according to PostScript name, Unicode value or Glyph ID. The end of the character’s bitmap data is indicated by the ENDCHAR label.�
�
ENCODING -1 glyphid�
This field is usually ignored by SBIT32. The ENCODING field is only used if there is no valid data in the STARTCHAR field, and if the Glyph ID listed in the ENCODING field is valid and preceded by a -1.�
�

Width Metrics

SWIDTH n�
Ignored by SBIT32.�
�
DWIDTH dx dy�
Distance, in device units, from the origin of the glyph to the origin of the following glyph. This value is the advance width of the glyph.�
�

Bounding Box

BBX x y off_x off_y�
Black body width, black body height, and x and y offset of the lower left corner of the bitmap from the origin of the glyph�
�
�
The BDF File Format (continued)

BDF Header Information

BDF files begin with general information about the bitmaps to be embedded, as described below.

Beginning of the SAMPLE.BDF file containing 11 ppem bitmaps

STARTFONT 2.1

FONT Gretchen

SIZE 11 72 72

FONTBOUNDINGBOX 18 16 -1 -3

STARTPROPERTIES 1

Copyright "Typeface and data copyright 1995 Microsoft Corporation. All Rights Reserved."

ENDPROPERTIES

CHARS 255

...

STARTFONT ver�
The BDF file format version: must be 2.1 or later. The end of the BDF file is terminated by an ENDFONT label.�
�
FONT psname�
PostScript font name. Ignored by SBIT32.�
�
SIZE ppem x_res y_res�
In the sample above, the bitmaps are 11ppem at a resolution of 72 dpi (72x72).�
�
FONTBOUNDINGBOX x y off_x off_y�
The maximum bounding box and offset values of all bitmaps.�
�
STARTPROPERTIES/ENDPROPERTIES�
Ignored by SBIT32.�
�
CHARS n�
The number of bitmaps contained in the .BDF file.�
�

Using Fontographer to Generate .BDF’s

Using Fontographer, you can create bitmaps for glyphs and output the bitmaps in a .BDF file.

(To generate a BDF file from Fontographer (version 4.x or later):

1.	Choose Generate Font Files from the File menu.

2.	Select PC in the Computer text box.

3.	Select Windows in the Encoding text box.

4.	Select BDF for the Bitmap Font to Output.

5.	Enter the ppem sizes to output.

6.	Press the Generate button.

You’ll need to make the following modifications of the Fontographer output to prepare the BDF for use by SBIT32:

Change the SIZE parameters from “ppem 75 75” to “ppem 72 72”.

Remove characters from the BDF for which there are no rows of bitmap data, i.e. the space character. Make sure that you delete all lines between and including the STARTCHAR and ENDCHAR labels for each bitmap you delete.

Update the CHAR value at the top of the file to reflect the number of bitmaps contained in the �BDF file.

�
The Metrics File

The most simple, and typical, metrics file required by SBIT32 indicates the ppem size for which the bitmap is being embedded, as follows:

The SAMPLE.MET file, demonstrating the simplest, and most typical, use of a metrics file.

PPEM 11

The remainder of the information in a metrics file specifies various metric values, most of which can be automatically determined by SBIT32 from the BDF file itself.

The following template .MET file contains comments describing the various entries. SBIT32 expects this file to be in ASCII text, with numerical arguments expressed in decimal. The routine in SBIT32 which parses this file is not case-sensitive. All information following a semicolon in a given line is considered a comment.

; Bitmap Size

PPEM x_int8 [y_int8]		;If the y-value is omitted, square pixels are assumed.

FORCECONSTANTMETRICS bool	;Setting this field forces the advance width of all glyphs to be

				;uniform. The advance width value is taken from the

				;FONTBOUNDINGBOX field in the BDF file. Default: FALSE.

; Line Metrics. These fields may be preceeded by H_ or V_. If only one direction is specified

; in the DIRECTION field, the prefix may be omitted. If there is no prefix and both directions

; are specified, both the horizontal and the vertical metrics will have the same value.

ASCENDER int8

DESCENDER int8

WIDTHMAX uint8			;Default: from the BDF file.

CARETSLOPENUMERATOR int8	;Default: 1 for horizontal, 0 for vertical.

CARETSLOPEDENOMINATOR int8	;Default: 0

CARETOFFSET int8		;Default: 0

MINORIGINSB int8		;Default: from the BDF file.

MINADVANCEBL int8		;Default: from the BDF file.

MAXBEFOREBL int8		;Default: from the BDF file.

MINAFTERBL int8		;Default: from the BDF file.

; Other Information

DIRECTION H|V|HV		;Writing direction. Default: H

STORAGE FAST|SMALL		;Subtable formats SBIT32 should generate. Default: FAST

APPLECOMPATIBLE bool		;Create Apple compatible entries (‘bdat’ and ‘bloc’) in the

				;font’s table directory to reference EBDT and EBLC. Also,

				;restrict table formats used to ensure compatibility.

				;Default: FALSE

Sharing Bitmaps among Multiple PPEM Sizes

SBIT32 allows you to insert bitmaps designed for a specific ppem size at any size, as long as the bitmaps have a constant advance width. For example, to save space in your font, you may want to reuse 8 ppem bitmaps at 9 ppem, changing only the widths used. In this case, SBIT32 will place the bitmap data in the font only once, but will create two sets of bitmap locator information. This feature requires additional entries in the .MET file, as follows:

; Sharing Bitmaps among Sizes. These fields are used only when the -l parameter is used with

; SBIT32. Each size entry can be separated by an END statement. All values must be provided

; for each substitution, except CREATEADDITIONALEBLC value, which sticks once you’ve set it.

SOURCESIZE x_int8 [y_int8]	;The ppem size of the bitmaps to be shared.

CREATEADDITIONALEBLC bool	;Should be set to TRUE.

END				;Allows multiple entries specifying bitmap sharing to be

				;contained in a single .MET file, separating the entries.

